O ®

Brandenburg University of Chair of programming languages and
Technology compiler construction

Diploma thesis

Designing, implementing and integrating
a structured C# code editor

Kirill Osenkov

kirill{@osenkov.com

Advisor: Prof. Dr. rer. nat. habil. Peter Bachmann
Co-Examiner: Prof. Dr. rer. nat. Claus Lewerentz
CR-Classification: D.2.3,D.2.6

June 1, 2007

Eidesstattliche Erklarung

Hiermit versichere ich, dass ich die vorliegendpl®@narbeit selbstéandig angefertigt habe.
Die verwendeten Hilfsmittel und Quellen sind im draturverzeichnis vollstandig

aufgefuhrt. Diese Arbeit hat in gleicher oder &iméir Form noch keiner Prifungsbehdrde
vorgelegen. Eingetragene Warenzeichen und Copgrigbtden anerkannt, auch wenn sie

nicht explizit gekennzeichnet sind.

1. Juni 2007

Cottbus

Abstract

Programs are represented as text by most codeasdituctured editors, on the contrary,
directly display the parse tree of a program aseealchy of embedded blocks. This way
the visual layout illustrates the structure of gregram and allows for atomic operations
on language constructs. The structured editor detgelopers avoid syntax errors and
concentrate on the meaning of the program instééatmatting.

In the scope of this thesis, an experimental sirect editor is created for a subset of C#
1.0. It is integrated into the SharpDevelop IDEaasadd-in and supports language-aware
code completion. The implementation of the edittdET) is based on a framework
specifically designed for building structured edstoThe framework, the editor and the
integration add-in are all documented together \hign architecture and implementation

details.

Zusammenfassung

Programme werden in den meisten QuelltexteditotenText reprasentiert. Strukturierte
Editoren stellen dagegen den Syntaxbaum des Proggarisuell als eine Hierarchie der
geschachtelten Blocke dar. Das Layout hilft dadi, Struktur des Programms besser zu
visualisieren und atomare Operationen bequem duféheen. Ein strukturierter Editor
hilft Syntaxfehler zu vermeiden und lasst den Eodklar auf dem Inhalt statt

Formattierung zu konzentrieren.

In Rahmen dieser Diplomarbeit wird ein experimdatektrukturierter Editor fir eine
Teilmenge von C# 1.0 entworfen und implementiedr Bditor ist mit der SharpDevelop
Entwicklungsumgebung integriert und bietet kontastbrte Code-Vervollstandigung. Die
Implementierung des Editors (.NET) beruht auf eingemerischen Framework zur
Entwicklung von strukturierten Editoren. Das Framewy der Editor und die Integration
mit der Entwicklungsumgebung sowie die Architektund Implementierungsdetails

werden in dieser Arbeit dokumentiert.

Acknowledgements

| would like to thank Professor Dr. Peter Bachmdon initiating and supporting this

research. It was an enjoyment to work with suchbadgadvisor on such an interesting
project. I'd also like to thank Professor Dr. Clduesverentz for being a co-examiner of the
thesis. Many thanks go to fellow students and ésewith whom we worked together on

the structured editor framework.

I'm endlessly grateful to my wonderful mom. Thanéuyfor your love and for always
being there for me!

Last, but not least, | thank my amazing girlfrieviidda, for inspiring me and making me

happy!

Kirill Osenkov

June 1, 2007

Cottbus, Germany

Contents:

O N RO 5 L0 L 1 []\ T 7
1. 1. TEXT VS. STRUCTURED EDITORS. ...uuittuiittittittettetteestssnesnssiessaestnessn ettt sttaertesstaesteeresssnsees 7
1.2.INTEGRATION OF AN EDITOR WITH THEIDEooeeiiiii et e e e e et eeeaaaas 8
1.3.PRINCIPLES OF PLAIN TEXT EDITORS. ...tuuttutuetetueettteeettteeaieeeta e esaesesaaaseetneeetneestneeeteerenaessaneeeenns 9.
1.4.PRINCIPLES OF STRUCTURED EDITORSuuiittttiitutieetueeetneeesnesstneesannsessnnssetneesssessanaessnaeeranseeenneesens 17
1.5.DISADVANTAGES AND POSSIBLE DIFFICULTIES .. cetutiitunieitneeeeteeesneeeeteeeenesssaeesstneerensesssneessnaeernnaees 25

2. EXISTING RESEARCH. ...ttt e et e e et e e e et e e st e e saa s e s s s e st sentnaes 29
pZa N e 11 0] = 3 2 29
2.2. INTENTIONAL PROGRAMMING ... ctutittittitttetnettetat ettt taa s eeaesstset et s st sttesaesstsssneesnsstnsesnnaransees 31
R TN = 1 2T = N EST Y s T 32
2.4 . THE SYNTHESIZER GENERATORcetuittteeetaeeeetesetaeeseteeeateseaaes et eeeaseesanesaaeeeanteeraneeseneeeenanss 33
2.5.OTHER IMPLEMENTATIONS ...t tttteeett ettt e eetaeee et e e eaa e e et e e eeaa e e aanee et s e aaassesaessanseeanessnnseernnseerensee 33
B2 TS U LY 1Y 7Y = T 34

3. FUNCTIONALITY OF THE STRUCTURED EDITOR..... oot e eeeas 35
3.1.CREATING A PROGRAM.....ctttiititt ittt ettt ettt e st e et teeeet s et et b s et sstesa s st ssaessnsstnsssnsranseansetnsranss 36
3.2.NAMESPACE MEMBER DECLARATIONS .. cuuittitttttettetteestesteesnssnesasssssesn ettt sttsetasesesstiestessnsrenies 39
3.3 T Y PE DECLARATIONS. .. ittt tttettt ittt teta et e et e et et e et et baeeaa s sa s sae s aa e e sa e e aa et anseaa st sean s et sanasessesbassnssnnns 41
3.4 ACCESS MODIFIERS. ..ttt ittiitettiett ettt et e ittt st et e st e eea et eea s et e e b s et s sb e sa s st s sa s sasssanantnstnseansetneranss 42
3.5.CLASS AND STRUCT MEMBERScuuittueitteeetn ettt eeetateesa e s e eeeaa e sea e et eeetasessnssstaeeranseesrnneernen 44
R TS N 1 =11 1= ST 47
3.7 . CONTROL STRUCTURES. ... cetttteitieeet ettt e s eteeeat e et e e e saeeesat e e e an e e s aa e e e ta e esanee st eesasseenaneeetneeennns 48
I T G0 Y 1LY 1= T 49
R N Ooln] =N ole] V] =TH =y o] TR 50

4. AR CHITECTURE ... et e et e ettt e et e e e st e e st e e et e e eea e e st s eatsesanseseen 51
4.1 . THE EDITOR FRAMEWORK ...uuiittiiteitietteeet et ee e s e et e et et e e st e sa s et s s b s eae e st e sa s sa s sa e an s sansnnnesbnrans 51
2 i S 53
G TR 7Y N LY 7N 54
R 0]V = 15 TN 54
TR 0] = 55
4.6.IMPLEMENTATION OF THE CH EDITOR ...vutituittiiiniitetieete it et e st sstsesssstssesnesanesan s st san s et setertssnesnns 56

LT =1 O 101 1 T 58
D DATA STRUCTURE. ..t u ittt ettt et e et et s st s tt e aa e s saee s et ba s s e s et s s b s ea s et e eb s st s st s sanssaneesnssbnseanssbasnns 58
5. 2. TREE ORGANIZATIONttt titu ittt ittt ettt e et e st e et sttt e s besaa s sa s sa s st e sa s sastanssanssbaseansetssannssstsestassssssnnns 60
5.3.OPERATIONS ON THE DATA STRUCTUREuuittttieitteiiteeetaeeeetaee et ee st seesan e saasestaesesnssssnaersraseranees 62
LI 0] N 7Y N = 2 5 1 o 63
LTS (01 1 = 0 T 65

5.6.HCONTAINERBLOCK, VCONTAINERBLOCKuuuiiiiiiiiiiiiiieieeeet ittt e et e e e e e e e e st ee et e e e e e e e aeeaeaaeaaeas 65

5.7 . LINEARCONTAINERBLOCK ...uuiiitiieiit ittt ettt e e e e e e e e e e eea e e et ee et e e et e e eaa e e et e eaneeesnerennaeeannnns 66
oI T I Qi =100 q =T 0 T 67
5.9. TEXTBOXBLOCKWITHCOMPLETION ...uuuiiitnieeeneteteeetieeeaeessaeesta s eeasssssaneestneeestnsesansssseerenseesanaeees 68
LSRR KO T Y= =T =] 0 Lo TN 69
LT N O A7 = E Y Y = T Lot 70
LSRR I = 10 i 0] N =1 o T 70
LT R Y 1= 12 =10 L1 T 71
6. IMPLEMENTATION OF THE FUNCTIONALITY coriiiiis et seena e 74
6.1.DESIGNING THE USER INTERFACE ... cituutiitieetteeetieeeeteeeaaeeseteeeeata s saaesssneeeaseeeansessnaeesrnsersnnaees 74
(T2 o T U T 75
6.3.EVENTS AND USER INTERACTION . .ceutittuneitteestnteetuesetneesanessseeeataessasssesnseseseeesnsersnaeestnseesnanaees 78
SR o 1] = 81
LSRR T Or0] N 12T 1S T 87
B.6.VISIBILITY CONDITIONS. .. cuuitttitteitetteeattsttesaessntan et ssaseaa st ta ettt sasst e easstessessansennessnessnrenns 89
7. IMPLEMENTING THE CH# EDITOR ...cui ettt e e ee e e st e st e e st eenaaaes 91
7. L. THE PROJECT STRUCTUREtttueitt ettt e ettt e ettt et ee et e e eeaa e e s st e e et e e e st e s et e eetasseanssannserrnnsersnneeeen 91
7.2.DEFINING DATA STRUCTURESBLOCKS) .1ieeeeiiiiisiesssitnnntnstensseseeeeeeessaaaaaaaaaeasassassanasnnssssssssnsnseeeeeees 92
AR D NN XY (o2 T = I = 100
T A LANGUAGESERVICE. ... ccuuiitieeete ettt e et e e e e e et e e e e es e e eaa e e et e e et e e et e eaa e e et e s snaeeeanneserneeennns 100
7.5.CLASSNAVIGATOR ALGORITHMS ...ituiitiiitieitsitititeeta st eeaa e st esaasesasasaa s st sstassasssesnessnsssnresnessnsans 101
7.6.STAND-ALONE EDITOR WINDOWuuituitnitnetnettneeteetetuesasssesssssssessessnessneesetteeaasttaerassnier. 103
8. INTEGRATING INTO SHARPDEVELOP ...ttt s e s e aran s 105
8.1. THE SHARPDEVELOPIDEottt meee e e e e e e e e e e et e e et e e e et e e st e eenaneeeannes 105
LI N = Tt T (o 0= = N 106
8.3. SHARPDEVELOP ADD N .. .ceuuiietnieitieeeteeeeteeeaae et et eeseaaeeeaan et eaaeeseaeesanesaansestnsessnssesnaeeennnaeesrnees 110
SR (@ 18 N o o =1 = N T N 113
8.5.IMPLEMENTATION OF THE ADDFIN . cuuiitniiteiteiteiteestestttesnessaessnsesasssn sttt seaasstesassssssneesnessnseens 115
SIS O] =N ole] Y =TH =y 1T N 119
LSS U 1LY 1Y 1Y TR 221
0. 1. FUTURE RESEARCH DIRECTIONS .. ctuituittitttittatttnettettnsttettesansesteeasssesnessnttsntesnesrnersnsesnesrinees 123
9.2.DRAWBACKS OF THE CURRENT IMPLEMENTATION .. .cetuiitueteteeeeneesetneestneeeesneessaneessneessnesaneeernns 125
O TR = = NN L T 127
L1, LIST OF FIGURES ...ttt et e e et e e st e e e ea e e et e eat e e eaa e s aneeraneeenneenen 131

1. Introduction

1.1.Text vs. structured editors

Most developers currently use text-based editorsdiv source code. These editors are
highly specialized and integrated into an D& provide a comfortable editing experience.
An IDE typically provides many helpful features Buas background compiling, code

completion, snippets, navigation, refactoring, cghng etc.

But at the ground level, to edit the program theettgper still deals with characters and
lines of text. The hierarchical structure of a peog is represented with the help of
specialized markup tokens and indentation to delamguage constructs. For example, C-
family languages use the curly braces { and }, XMées tag pairs <X> and </X> and

VB.NET useXeyword —End Keyword pairs.

Internally a program is represented by a hieraethstructure called a parse tree or an
AST? It is being recovered from the source text usirsganner and a parser. The AST can
be visually displayed using embedded blocksstiuctured editor(also structure editoy

allows the user to interact with the syntax treedly by interacting with these blocks.

' IDE = Integrated Development Environment

2 AST = Abstract Syntax Tree

Language constructs are the new editor “atomstpimtrast to characters and lines of text.

Thus a round-tripping from text to AST and backmmecessary.

Note on terminology: some empiric web-research eagaled that the term
»Structure editof is more used in the context of chemistry and dmgl to
denote editors for molecular and cell structures. tde contrary, the term
»Structural editor* is more often used in the context of editing doemts (for
example, in [Amaya]) and that is why it is prefeliseused in this thesis.

We'll use the ternplain text editorstraditional editorsor simplytext editorsto
denote the currently widespread approach of edjiiogram as text.

Such a tree-based representation can provide ndwantages. The advantages are two-
fold: advantages for the user of the editor (maditireg comfort and improved usability
through language-awareness), as well as advantagéise developers of the IDE (more

consistent, robust and extensible architectureutitronodel-view-controller approach).

Wesner Moise envisions in [WesnerM1] 2004 the dgwalent of a structured alternative

to plain text editors:

“Text editors are going to go away (for source caihat is)! Don't get me
wrong, source code will still be in text files. Hever, future code editors will
parse the code directly from the text file and vl displayed in a concise,
graphical and nicely presented view with each efgrnrethe view representing
a parse tree node.”

However, this thesis supports a vision where stinect editors won't fully replace text

editors, but rather complement text editors asayetther view on the same internal code
model, to supplement richer and more intelligentimgl experience where possible. It is
important to note that the language underneath irarthe same: it's all about a new

representation of same old language constructs.

1.2.Integration of an editor with the IDE

We’'ll talk about editors in the context of a tydidBE. For this purpose let's divide the

architecture of a typical (not every!) IDE into logl layers (tiers):

A\ 4

A 4

Front-end Core Back-end

A
A

Figure 1 — layered architecture of an IDE

Let’'s call the part which is closest to the usdramt-end— the user interface, the editor
surface and the documents. A front-end is usuallit bpon some application framework
— a complex Ul library which provides hosting witH elements (dock panels, menus,

toolbars, document windows, etc).

Although theback-endnormally consists of many different components, itain part of it
is of course the compiler. A back-end also usu@tjudes a debugger, a storage system

(file-based or version control) etc.

For our purposes, we'll call the mediating part¢bes The core binds together all parts of
the IDE, in particular, it connects the compilerthe user interface. An important part of
the core is théanguage servigewhich allows the IDE to “understand” the code ardch
makes the IDE “intelligent”: the DOM the parser, the code colorizer, the resolver, the
background compiler, the project system etc. The ecpakes the text editdanguage-
aware because the feedback provided to the user isli@s¢he syntax and semantics of

the programming language as well as knowledge abeuytrogram being edited.

1.3. Principles of plain text editors

1.3.1.Text data structure

The main abstraction behind a text editor is aastr@f characters or a sequence of text
lines. This abstraction is widely used in the frentd and in the core to work with
programs as text files. The API interface of thé&ogdcontrol only works with text and

does not “know” about the AST.

! DOM = Document Object Model

In the core, two principal data structures arerinti@ed together: the text data structure
and the AST. The AST is mostly being used by tinguage service.

Interestingly enough, although the core “knows” @ihie AST, the interface between the
core and the back-end is still based on text inyriBs. The back-end (e.g. a compiler)

acts as a black-box:

Source-code as plain teft T Status and errc

Compiler as a black-box

l

Binaries

Figure 2 - compiler as a black-box for the IDE

The interface of the compiler doesn’t provide “kregge” about the internal AST data
structure: plain text goes in, is internally parsatb a private AST and binaries are

generated.

This black-box isn’t extensible. There is no positybfor the user to intercept the process
of compilation and to gain access to the intern&ll Aof the compiler. There are a number
of scenarios, where a dramatic increase of podmbilin the direction of meta-
programming and generative programming would besiptes if only one could have
access and work with the compiler’'s data structdresng the compilation. One could use
it for intelligent preprocessing, custom languaggersions, code injection, AORetc.
Vendors that provide IDE extensions are often forcerewrite huge parts of the compiler
functionality which otherwise could have been exgabas a clean compiler API operating

on the “live” AST structure.

It is also characteristic to all text editors iattkhe text editor acts like a black-box as well.
The current program is being presented to the @swt,the user is carrying out actions,
which the core is totally unaware of. The meanirfgtlee user’s changes is being

completely lost at the very moment when the chasgeade and only reconstructed with a

! AOP = Aspect Oriented Programming

10

lot of effort from the background compiler. Baslgathe core has to re-parse with every
user edit, because it has no knowledge about teatithe meaning) of the user change.
The user could even replace the entire programimeatsingle action, and only a full re-

parse can reconstruct the knowledge about the amagr

text out

Text editor IDE Core

A

A 4

text in
()

) O

Has to recreate the

meaning each time by
reparsing

The core doesn’t possess
knowledge about the meaning
of the user’s changes.

“event horizon” for the knowledge about the program

Figure 3 — the editor as a black-box for the IDE

This is the “black hole” of plain text — anythingrc happen out there and the parser
doesn’t have any idea. The IDE doesn’'t know whaipeas to the code between the
parsings. This knowledge is lost and found evemeti The reparse algorithms can get
incredibly complex, when an incremental backgrowunpiler is used. In this case,
changes are tracked atrtificially, by recalculatdeita differences each time between two
known text states or by differentiating “destruetiws. “harmless” edits (if a reparse is

necessary).

It is noteworthy, however, that the decoupling andapsulation of the text editor and the
compiler from the IDE might provide certain fleXity with regard to the implementation
— one could change the language (the compiler)onttichanging the interface that binds
the compiler to the outside world. However, as sasnone needs to expose compiler
functionality to the rest of the IDE (for examplet the purposes of the language service —
intelligent code completion etc.), this observatio® not valid anymore — the
implementation of the language service has to @ ke sync with all changes to the

compiler, regardless if the interface to the coempihanges or not.

11

1.3.2.Advantages of text editors

The “black-box nature” is at the same time an irtgoaradvantage of all text editors — it
gives the user full flexibility and freedom to maébsolutely any changes to the text, in
any order, not bound by any semantical constraifiss allows for intermediate editing
states where the program is incorrect. In manyscase easier to bring the program into a
temporary incorrect state to reach the desiredecbrstate. A prominent example for
incorrect intermediate states is transforming

inti=0;
i=42;

into
inti=42;

by placing the caret at the beginning of the sedoreland pressing [Backspace] several

times. At some point the code snippet will looketik
inti=0i=42;
which is incorrect, but fully OK as long as thiglearemains within the editor.

As the editor control is decoupled from the resttted IDE using a generic language-
agnostic APl surface, it becomes easy to implemeeneric, flexible and almost

universally usable.

Text editors allow for editing programs pretty fasio. Editing speed is an important
advantage of text mode, to which programmers aesl.ult is crucial to preserve this

advantage to let users benefit from this.

Another implicit advantage of text editors is faiamity. Text editors are something all
developers use all the time during coding, and tgey used to it very well. For a
programmer, there is basically no need to learn toouse the editor, once a new language
or environment comes out. Moreover, text editors actually very effective, so many
developers are actually totally pleased with théiregl experience and don’t have any
complaints. This, and the fact that text editors so widespread, will probably be the

reason, why structured editors never fully replmog editors.

12

1.3.3.Usability problems of text editors

However the flexibility of text editors comes apice — the users have to take care of the
syntax and formatting. They have to help the editorconvert the program into an
intermediate representation by manually separdinguage constructs with separators
like ‘{*, 7, ‘(", ‘/'. Even if the IDE provides automatic code formatting (employing the
pretty-printer from the language service) and camgppets to automatically insert
constructs like { }, the user is still involved witmanually inserting tabs, spaces, blank

lines, semicolons etc.

It makes sense to compare usability of text editorthat of structured editors
by measuring and comparing the number of keystrdlésmic user input
actions) required to achieve the same task.

For example, let’'s consider creating an empty staté block for a method in Microsoft
Visual C# 2005:

void Foo()
{

}

It takes three to four keystrokes to insert twanklénes and to position the cursor on the
first line (either[Ctrl+Enter] twice or[Enter] , [Enter] , [UpArrow] ,[UpArrow]).
Then it takes three keystrokes to type imid “ (IntelliSensé" completes Vo” to
“void “ when [Space] is pressed) and another five fafdd() ”. And then it takes 6
keystrokes to insert the curly braces and to pmsithe caret in between with the right
indentation. One could accomplish the same with ukeystrokes instead of 18, which
might seem not a big difference at first, but ifiniéely gives an overall improvement of

editing experience.

It should be impossible for the caret to enterititeentation space to the left of the blocks.
If the code is properly formatted (and this alwahsuld be the case), there is no need to
edit anything to the left of the first significacharacter in the line. Now it is possible to
penetrate the indentation space by pressingLtfd or [Home] key. All the tabulation
should be done automatically, and hence the negernetrate the left tabulation margin

should be eliminated.

13

However, experienced programmers are used to typindgast, that this doesn’t bother
them at all. Besides, some languages (for exam@BeNET 2005) take more care of
typing, completion and formatting (code snippetatodormat on paste, etc), which
reduces typing efforts to a minimum. So it is a ocwon belief that the usability of
traditional text editors is not an issue, espegialpresence of such enhancement tools as,
for instance, JetBrains ReSharper ([ReSharper])Wrole Tomato Visual Assist X
([VAssist]). However for beginners, a learning aaito use an editor effectively is still

pretty steep, so formatting and the necessityke tare of the syntax is an issue.

1.3.4.Implementation difficulties with text editors

The black-box nature of the editor and the compdetates some implementation
peculiarities when developing an IDE. One of thggest ones is the complexity of the
round-tripping between text and AST. The one dioects more or less straightforward —
pretty-printing, auto-formatting and code generati@he other one is the tricky one —
going from code to the AST. This complexity is siaslly being tackled by the parser — in
the sense of the famous dragon book ([AhoSeUl])wei@r what the successes of the
compiler science don’t currently fully cover is timeplementation of the language service:
“understanding” code and providing intelligent feadk about it. The typical problem is
implementing the expression finder and the resolvgiven a text stream and the caret
position, it is required to reconstruct the langua&gnstruct under cursor and to provide
user feedback about it (code completion, method, ipAirameter info or even colorizing).
This task requires finding the current context dfithe class and method that currently
contain the caret, as well as the current expragsieparsing the necessary text, updating
the internal representation and actually perforntiregtask.

The implementation complexity of round-tripping is due to the fact that most IDEs

currently are built around the text data structures, and not around the AST.

14

Text editor

A
Edit Display
v Pretty-print, Reflection
Source code text| Parse tree (AST)| Compiled binaries
‘} Parse 1 Compiler
v
Refactoring Debugger etc...

Figure 4 — round-tripping between the AST and IDE omponents through code

To avoid this complexity, an IDE could be built anal precisely defined, language-aware
and observable syntax trees, which would serve has Model in the MV triple
mentioned in [GoF]. A text editor should be jusViaw, a thin presentation layer which
maps user edits to the AST using a controller (asoS&ierarchical controls representing
language constructs). All other IDE components khoualy deal with the AST (also often
called DOM, CodeDOM, Code Model, Intermediate Repreation, Parse Trees, etc.).

Like a database management system guaranteedftimeeht of ACID principles, the IDE
should guarantee the integrity of its data stregurThe reasons why people invented

DBMS to replace plain text are often the sameliergource code (see [SCID]).

A compiler shouldn't be a black-box, but a cleanl ARrface instead, which exposes
methods to transparently operate on the AST andhtsform it, thus making the compile
functionality reusable and extensible (pluggable)such a way one could easily plug-in
custom transformations or code generations betwieerparser and the code generator.
Authors of IDE extensions could thus reuse the agmnfunctionality, without the need

for own third-party parser, resolver, etc.

1 MVC = Model-View-Controller

15

A debugger could map to language constructs instéatext positions in code, thus
preventing that text positions can get out of syffaus many known bugs with line and
column number offsets could be easily prevented.

This idea brings us to the possible approach afgustructured editors to directly operate
on the AST:

Text editor Structured editor
A A
Edit Display Modify View
v Pretty-print v Reflect
Source code text| Parse tree (AST)| Compiled binaries
Parse - Compilg

Figure 5 — a structured editor directly operates orthe AST

Shifting attention to the AST instead of text dataucture would allow bypassing the
round-tripping step:

Structured editor

A
Modify View
v Reflection
Parse tree (AST) A Compiled binaries
'y Compiler
A 4
Refactoring Debugger etc...

Figure 6 - a possible architecture of an IDE builaround the AST

It is important to understand that an architectafran IDE built around a structured editor
and syntax trees doesn’t necessarily imply that dterce code has to be stored in a

different format, perhaps in a database. The satode could still be stored in usual files.

16

The file format of programs doesn’t even need tange. A parser could load the AST
from source, and a pretty-printer could save th@ A&ck into the source code files. The
editor could even preserve user’s formatting wheanns.

1.4.Principles of structured editors

In contrast to the modern text editors which cooédcalledlanguage-awargyou might

call structured editordanguage-driven This expresses a more strict and constrained
approach to editing, where each change is cartie@mm language constructs and not on a
list of text lines. The syntax and grammar of theguage define what language construct

can be inserted at the current insertion point,thededitor provides choice for the user.

1.4.1.Atomicity

Unlike plain text editors, a structured editor canrepresent or operate on a part of a
language construct — it operates on AST elements \aBole. For instance, in plain text
you can have an incomplete construct with an oggbrace but without the closing brace.
A structured editor doesn’'t need braces at altekt, you can delete part of a concept by

deleting incomplete selection. In a structuredagditou can only delete a whole concept.

The atomicity of editor operations guarantees taagjuage constructs are being added,
moved, renamed or removed as a whole. The typedri¢éasguage constructs would only
allow correct embedding of concepts — each concaptonly host those concepts which
are allowed by the language grammar. For exampa, wouldn't be able to move a
method to a namespace level, or a foreach statenterd class, or declare an

implementation on an interface method.

Each change to the data structure is of transaadtioature and is language-aware. For
instance, one would speak of changes in terms afdss was inserted” instead of “text
was inserted”. It is easier to track all the changean Undo/Redo buffer and to compose

multiple changes to a transaction.

1.4.2.Correctness

Most syntax errors are simply impossible withintrauctured editor, so the program being
edited is always syntactically correct (with mirexceptions). For example, representing

hierarchical concepts as nested blocks (and ndt avidet of paired delimiters) guarantees

17

that the curly braces and #region directives willays be balanced. Curly braces earlier

used to delimit tree nodes become now unnecessary.

When you are inside a block, only blocks of certigipe can be inserted, dependent on
language syntax. You can continuously move youetcdrough your code as if it were

plain text. All the blocks are formatted automatica

Few remaining errors, which are not catched bysthacture itself, could be easily found
and highlighted by using a tree checker visitore Tinplementation would be simpler and
wouldn’t theoretically even require a scanner grasser for this purpose. Thus the editor

can automatically ensure syntax correctness bgntguage-awareness.

1.4.3.Usability

Since a structured editor has more ready knowledgeit the program being edited and
the semantics of the language constructs, it care reasily offer more intelligent user

feedback on the program and offer only valid cheibased on the current context. The
context itself can only be a correct language eansbr a correct insertion point where a
language construct can be created.

A structured editor can also reduce the numbeeagfiired primitive user input operations
(key presses, mouse clicks and moves). For exantpsesufficient to select a block and
hit the[Delete] key to remove a concept. In a text editor, oneld/diust have to select
the text which corresponds to the concept and aftlyr that pres§Delete] . When a
concept spans more than one screen (for exampig, @dass), it is still easy to select and
delete it as a whole in the structured editor, whserselecting the class in a text editor

would require scrolling.

Each block can be selected, collapsed, comment¢arcopied to clipboard, moved into
another position in the parent block or into anotileck with just one click or key press.

Entire block hierarchies are selectable just ligeal blocks.

With a structured editor the user doesn’t have twryvabout indentation, semicolons,

curly braces etc. The editor takes care of theaxysb that the user can concentrate on
editing the program and not on remembering theasyfdr a language construct. The code
is being automatically “formatted” as it is typed because it is actually displayed from a
live AST, which is always correctly “formatted”. €user mostly enters important content

and not irrelevant formatting symbols.

18

Structured editors actually open wide possibilities usability research. It is a complex
task to gather statistical information about howfedent developers perform elementary
typing operations and what elementary user inptiba€ are required (mouse and key
clicks, mouse moves, pen gestures). One thingres: slevelopers don’t actually notice,

how exactly they type — they just type without #ing about it and develop some sort of
reflexes when working with an editor for a long éinStructured editors could substantially
shorten required user input actions when compareext editors. This will most probably

be a problem for those who are already using tditbes for a long time, but newcomers
will probably appreciate it, especially becauseytden't really have to remember the

syntax (“were there semicolons insidt®a loop or commas?”).

Context help for an editor could provide importainits for the user based on the current
selection and caret position. Implementing contetp would be much simpler too — one
could simply declaratively add help pages to thetay constructs, without the need to

parse the source code to determine what constectriently near the caret.

An intelligent scrollbar could allow easy and pofuercode navigation. The scrollbar
could contain miniature portions of the code docain&his approach is being explored by
the Human Interactions in Programming group [HIR3ide Microsoft Research — in a

project called “Code Thumbnails”.

A so-called “breadcrumb” control could be provided improved navigation experience.
When a block is active (focused), an extra cordoalld show a horizontal list of all parent
blocks as a chain. Each link of the chain couldiat be a hyperlink to the corresponding
parent block, or a combo-box with the drop-dowhdisall other siblings at this parenting

level.

Another possible future direction for usability @asch is key stroke prediction based on
statistics — gathering and accumulating typing erpee from users all around the world
could provide some Al-driven preselection what ¢aret is going to be used next, just
like IntelliSense in Visual Studio 2005 remembéies last used type and member.

For those who are sceptical about the usabilitg efructured editor because it will be so

unusual and difficult to use, Wesner Moise giveggsabable answer to this in [WesnerM1]:

. ... Such graphical editors won't actually appearcmdifferent from text
editors; they may even look the same as text eglitaith some differences.”

19

Thus structured editors could mimic traditionaltteritors to provide familiarity but still

retain the advantages of structured editing.

1.4.4.Presentation

Another good thing about structured editors is thay are very easily skinnable, because
the content is decoupled from the presentatiort likesa CSS stylesheet can provide a
totally different look for an XHTML document, onewd easily change the presentation
of how language constructs are visualized on theesc It is the content and the structure

of that content that matters.

These are the reasons why XHTML + CSS were devdldpereplace old
HTML where the presentation was mixed with the eaht Another example
for this development are styles in word processotsch are definitely better
than inline formatting scattered all over the doeatrin multiple places.

When the presentation can be adjusted independaintigntent, preserving team’s coding
guidelines becomes a snap. One could virtuallyt®etlie teams coding guidelines in a
special domain-specific editor, for example in apincal design software with gradients
and visual effects, and the entire source code advbal automatically displayed with this
style on the fly. Or, every developer could evemehawn coding guidelines (style library)

—and have all the code automatically displayeth Wér/his favorite style.

When you open the program in another IDE with dédfe settings, the code could be
displayed using these settings automatically, withihe need to manually reformat it.
Reformatting code would become unnecessary. Codlel @ automatically formatted for

printing based on one of printing templates.

Again, this is another manifestation of the MVCngiple: one could easily switch views
or use several different synchronized views at shene time, as long as the model

(content) is clearly separated from the presentatio

Another nice feature of structured editors is thegibility to collapse everything, to only
show the currently relevant code. This could go mfigther than by text editors — one
could even apply custom sort or filter to displayyorelevant things in the desired order.
The order in which the declarations are physicallgred in the file would become
separated from the logical order in which they presented to the user. Different

developers could even have the same code sortedyawant it.

20

This is a common reason for disagreement in tedmatacoding guidelines —
some prefer to have all the fields at the beginmihthe class, and some prefer
to have each backing field attached to its corredpy wrapping
property/getter/setter.

Structured editors are also well suited for embegldither mini-languages (D$Lwithin
the main (host) language. Just as LINQ features ax@t of “embedded SQL/XML” in C#
3.0, structured editors could easily embed cust@h,Dor example mathematical notation

for expressions, with the square root sign andaoadrfraction notation.

An editor could contain custom interactive contrlmlsmprove the editing experience for
specialized content, for example a color-choiceupopox where a variable of type Color
is required.

Other visual formatting could be added as neces&anyexample, custom lines, rules and

delimiters could be used instead of ASCII-art sggenments:

Lutz Roeder gives insightful examples of such dnments in [LutzR1].

1.4.5.Simplification

A structured editor could simplify and automate sn@nogrammer’s tasks that now have
to be carried out manually. Backing fields for pedpes can be entered and displayed

concisely (C# 3.0 now does this with its auto-innpéated properties).

1.4.6.Extensibility

A structured editor could provide a platform fortending the language by defining some
equivalent of macros. One could define a new tyfp& language construct externally and
then just plug this type into the grammar of théaed Thus very concise and expressive
shortcuts for long pieces of code could be defivatich could be expanded into longer
code sections during the code generation. Therdiftee between such macros and, say, C
#define macros is that the structured macros (unlike Crasgcwould be language-

aware, and thus all the type-checking and veribbcatan actually take place. The problem

! DSL = Domain Specific Language

21

with C macros was exactly the lack of language-awass — the substitution took place
before parsing, at the preprocessing stage. WitQulage-aware macros the substitution
takes place after parsing — language constructdeirgy inserted into the existing AST,

thus allowing all checking visitors to run on thieal tree. Moreover, the editor’'s grammar
and type-checking facilities could only allow intleg macro instances at correct places in

the tree. This eliminates the problems of text-tdasacros and preprocessing.

The [Nemerle] programming language gives a greatge of language-aware
macros in a text-based language.

The structured, factored nature of the editor woalldw to more easily extend the
language without actually extending the languadagding in new language concepts
probably wouldn’t even require recompiling the editA new ecosystem for “language
plug-ins” could arise, which would allow each saite vendor to develop tools for the
product parallel to the product itself, in the serd Microsoft's Software Factories
initiative ([SoftFact]).

A great research about extensibility of structureditors is given by Intentional

Programming ([IntentSoft], [Simonyil]).

1.4.7.Implementation

An IDE built around AST structures and backed btauctured editor that directly

operates on this structure could really simplifg tharchitecture and implementation of
many components, such as code completion, refagtonavigation, debugger, edit-and-
continue, etc. The thing is, it is easier to mdke IDE intelligent if there is no need to
constantly round-trip between text and AST. A gamample is extracting a method,
which would be simpler to implement in comparisoithvsome current implementations,
where a lot of effort has to be put into the rodnpping. When some code has to be
inserted into the program with a text editor, aong@roblem is finding the correct place to
insert and take care of the formatting. A struaiueditor takes care of the formatting.

An important advantage in the implementation isnglating the need for a background
compiler. When the AST is kept up-to-date by thioedtself, there is no need to reparse
code in regular intervals in a background threadheWthere is no background thread,
there is no danger that the program information ld@et out of date, which can be the

case with background compilation. Implementing akiggpound compiler is not an easy

22

task and freeing the developers from the need pdeiment one could simplify the overall

architecture of the IDE and keep it more robust @msistent.

1.4.8.Performance

It may well be the fact that the performance ofracsured editor (especially when doing
complex language-aware operations such as codeletompor refactoring) would far
surpass that of a text editor. Resolving and repgiis a common bottleneck of traditional
language services, and a structured approach bamidle this elegantly.

1.4.9.Storage and version control

When the source code is stored as text, the iltezpeesentation isn’t stored with it — it is
being reconstructed every time when the sourceadddd into the IDE. That's why the
changes are expressed in terms of changed lingsrgion control systems. Moreover,
current version control systems do not provide lbee#t about, for instance, how many

classes were changed, how many methods have bded/eemoved/moved/edited, etc.

When the parsed and resolved AST is stored in siore¥d and transactional database,
changes could be registered in fine-granular, laggetaware manner: classes added,

methods edited, variable renamed, etc.

Thus the editor (“View”) could reside on the clieartd the code being edited (“Model”)
could be inside a database repository on a (pgssévhote) server. This could even
potentially allow several people to edit the sammgpam at the same time (while viewing

updates in realtime), which is more fine-granuleart current version control systems.

Branching and merging operations could be carriat rmore easily and in terms of
changes to language constructs. Because the drdeclarations on a class or namespace
level is visible to the system, moving a methodhwmitthe same class wouldn’t even be
considered a change for the end-user — the useoscaity out forward- and reverse-
integration processes now can concentrate on thenimge of the program, instead of

formatting.

Another advantage of language-aware source codesitepes that store AST in a
database is a requirement, that every code beiagkeld in must be at least syntactically
correct. When implementing such a system, it sunedyld be possible to only allow to
check in code that compiles, because the systendwmderstand the code which is being
checked in.

23

A language-aware version control system can preweaking builds.

Moreover, the check in process as such, could pkaed in the future by more fine-
granular “transactions on code” — literally eacharfpe would be registered in the
repository as a transaction and one could groumgdgsa manually to the desired
granularity level, thus grouping changes to largetities (for example, one day’s work).
The change groups could be grouped too (desigrerpafiomposite) to encapsulate

features, milestones, products, etc.

A web-service based, programming language indepg¢rm®irce code repository would
allow developers to access shared code from desidoputers or mobile devices. The
code can be automatically formatted and representady preferred way on the client (by
the editor), whereas the repository is formattiggeastic.

A lot of insight about storing source code in somirmediate representation (e.g. a
relational database) is given in [SCID]. A big apation of storing source code in

database could be static analysis tools.

1.4.10.Static analysis and source code querying

Static analysis of source code and source codeyiggeare becoming more and more
popular nowadays. Tools like [FxCop], [NDepend]ef@nle] and [NStatic] either store
the parsed code in a relational database, parsecode on the fly or analyze
assemblies/byte-code. Either way, they operateherAST, and if the AST exists during
code editing and is always up-to-date even withtbatbackground compiler, such tools
could greatly benefit by eliminating the need focustom parser or even provide a real-

time “as-you-type” analysis experience, where gussi

1.4.11.Help with learning the language

A good thing about structured editing is that itneore explicit about the language
constructs being edited. A structured editor bett#ects the inner structure of a program,

how it is seen by a compiler.

Currently, the first thing beginner programmersriheas the textual syntax of a
programming language, not the language constrimdmgelves. A common beginners
question when learning programming is “what [larggiaonstruct] can | actually insert at

the current position™? Other beginners problems fmeexample, remembering the right

24

keyword, spelling and order of arguments, typing &rmatting, matching curly braces,

indenting blocks with tabs etc.

These questions could be better answered by astedceditor, where syntax constructs
and their embeddings can be more clearly visualiaed an alternative list would only

show possible constructs.

Also, programmers use different programming langgsadn particular, the Microsoft
.NET Framework supports many languages in a siagleronment. Understanding code,
written in another .NET language, is for many astable. However it is often the case that
the languages differ mostly by syntax and it is gkietax that prevents a C# developer to
immediately recognize a constructor iSub New ... End Sub ”. The structured
approach allows to at least partly erase the baiexlabetween different .NET

programming languages and those who use them.

1.5. Disadvantages and possible difficulties

1.5.1.Usability

Probably the biggest predicted problem of a stmectueditor implementation is the
usability problem. While editing text is straightfeard and consistent (only some basic
operations are needed, such as insert a chardetete a character, move the caret, etc),
editing the AST structure on the screen requirasniag how to operate on each node of
the program. Moreover, editors that force the useuse menu, toolbars or the mouse
during editing are most probably destined to faéxt editors allow to edit programs using

keyboard only and users won't give up this ability.

That is why, a structured editor must be more &sdbhn a text editor by at least the
amount necessary to convince users to transitionsttactured editing. This puts
tremendous constraints on the user interface, thgebt of them being able to use
keyboard only. Also, the comparative amount of kegss operations to achieve same
functionality must be lower than amount requiredext editors. Another restriction is that
the editor must be consistent (different languagestructs must be operated the same
way). Only under these strict circumstances theussat will even consider giving the

structured editor a chance.

25

1.5.2.Lack of familiarity

Even if structured editorsould be better than text editors in all areas, theralavstill be
an important advantage of text editors over stmectieditors: users throughout the world
are well familiar to text editors. For exampleydu have ever used Notepad, you will be
immediately familiar with the editors of [SlickEfitVisual Studio ([VS]), [ReSharper],
[Eclipse], [IntelliJ] IDEA, etc. Structured editomsiust offer sufficient value over text
editors while preserving all their advantages, #uiglis a very complicated problem.

1.5.3.Lack of flexibility

While text editors become more intelligent and Usalby applying more and more

constraints to what can be typed in plain texticdtred editors move to the same goal
from the opposite direction: they start with theicsést constraints that arise from the
hierarchical nature of the program and relax soarestraints to allow temporary incorrect

program states for improved and simplified editxgerience.

Less restrictive, less .
language-aware Text editors

l

Ideal language-aware editor (hybrid)

!

Structured editors

More restrictive, more
‘L language-aware

Figure 7 — approaching the ideal editor from diffeent sides

As noted in section 1.3.2, text editors aren’t tediby the semantics of the language and
allow the program to be in an incorrect state eieample, if it is required to provide more
flexible editing experience. Structured editorsheit lack this freedom to corrupt the
program for the sake of usability, or must weakensacrifice) the constraints posed by
correctness checks to provide the user with thesseey flexibility. This is a compromise

every developer of a structured editor must facmepor later.

26

The editor shouldn’t stand in the way. The userustibnotice the editor just
like people don't notice the pen they're writingthvi

Somewhere in between there is the editor of thardéutwith just the right amount of

flexibility and language-awareness.

1.5.4.IDE dependency

Software developers and development teams chooseviedop a product using a specific
programming language or a combination of languagdss brings in a language
dependency, but still leaves the freedom to chtlosdDE for that language. If the source
code is stored as plain text, it is easy to open & different IDE without the need to
convert anything.

But if the developer/team chooses a specific strect IDE, the dependency is much
greater. Not only the source code will probablysb@ed in a custom format of this IDE,
the developers might get used to the concreterealitd it would be difficult to change the
IDE in the future. However, the problem is solvald@ IDE might (and most probably
will) provide an option to store source code inttibes, just like traditional IDEs do. Or
the storage format could be standartized, just &kerogramming language syntax is
standartized. Beside standardizing programminguaggs of the future, it will probably
make sense to simultaneously standartize the stactistorage/representation format for

programs in that language.

1.5.5.Preserving source code formatting

Many developers would feel very uncomfortable & tustom formatting of their source
code would be influenced or even completely losahyeditor. Imagine a situation where
existing source code is stored in text files withstom whitespace formatting and
comments. Such formatting (as indentation or emiptes) could carry important
information for the developer, or even convey vitdlormation via the team’s coding

conventions.

The problem is that a structured editor is typicalhaware of whitespace and formatting
because formatting is not formalized by the languggammar and is ignored at the

scanning phase.

27

However, this problem could be solved by usinfgranatting preserving parser, which
not only stores text position (line and column) imhation for every node of the AST, but
also stores special nodes that represent all tttealewhitespace between the language

constructs, which is normally being ignored by itiadal scanners.

This formatting information should be taken int@w@nt by the structured editor and the

pretty-printer should output the source code iniclgdll the whitespace.

An interesting research direction could be autocadlli deducing whitespace formatting
rules from the existing source code and auto-imge”tuch whitespace when new nodes
are created in the structured editor. For exaniple,editor should notice that there is
always an empty line between methods of a clas$ slould automatically guess and
insert an empty line around a newly created methklmvever this task is obviously very
complicated because of its non-deterministic natarel also because whitespace
formatting is something that is being mostly igrtbtey the compiler and programming

language research.

1.5.6.Standardizing difficulties

It is already difficult enough to come up with arstard for a programming language,

including its grammar and semantics.

Most often standards do not cover code representéfiormatting and coding guidelines),

because this is not formalized as good as the Egeyayntax.

Coming up with standards for a structured editoraftanguage is a highly challenging and
vastly non-trivial task. Such a standard would neetdonly to cover the appearance of all
language constructs in all possible contexts, oholg margins, padding, colors, border
thickness, styles of backgrounds etc. but it woalsb have to describe and formally
specify the editing behavior, keystrokes, visuahrgfes in display and so on. Such a
specification would probably be more voluminousnthhie HTML 4.0 specification,
because HTML only covers static presentation anesdoot include complex runtime
behaviors exhibited by structured editors.

28

2. Existing research

2.1.History

Decades ago many developers started thinking adtarhatives to representing programs
as plain text. With the improvement of programmiagguages and environments, the
intuition grew stronger that the syntax tree shdugddirectly represented on the screen.
However, the first wave of research and developrfaled to produce a structured editor

or environment capable of becoming mainstream. Tdilare resulted in a widespread

disappointment in structured editing overall, bessathe promise was very high, but the
outcome was unusable. Since the first wave of esluless effort has been made to build
such an environment. But there is still ongoingeagsh happening in this area.

2.1.1.Motivation

Wesner Moise outlines great motivation points foudured editors in his blog posts
[WesnerM1] and [WesnerM2] dated 2004.

A good summary of the features of a hypotheticalcstired editor and a lots of bold ideas

are given by Roedy Green in [SCID].

Martin Fowler ([Fowler]) has written an outstandiagicle on “Language Workbenches”,
which is very close to the idea of a structuredaediThis article is an in-depth overview
about domain-specific languages and the need ftdbls to get more language-aware.

Sergey Dmitriev of JetBrains writes about “languagented programming” in [LOP].

29

2.1.2.Problems with building structured editors

Many (if not all) early attempts to build a usaldguctured editor failed to become
mainstream. One reason for this could be that huroamputer interaction wasn’t mature
enough at the moment (first developments of GUlewest sufficient, many GUI concepts

weren’t invented yet).

Another complication was the complexity of makingarse tree interactive. This task is
fairly similar to building an HTML renderer, butig more complex in a sense that it needs
to support real time editing — just like WYSIWY Gitals do. A fairly complex framework
of visual controls is necessary. Tying togetherftmetionality of stand-alone controls in a
convenient way is not a straightforward task tooloAof difficult problems need to be
solved here: defining an intuitive appearance atthbsior of controls, developing fast and
robust layout algorithms, defining the order of lesrd navigation, routing mouse and
keyboard events, response to user input, modetangsactional undo/redo behavior and

much more.

Another important cause why structured editorg atén’'t mainstream today is given by

Wesner Moise in his blog post [WesnerM1]:

| think a major cause of the delay in this revalntis that both C/C++ relied on
preprocessors and headers. Some historical languiége Smalltalk actually
had this support. Fortunately, more modern langsiige C#, Java and VB are
standalone files, one class per file, with a litheno preprocessing support.
This enables easy parsing.

Most probably this is yet another reason why apgeae of managed environments such as
Java and .NET actually triggered a new wave ina$eand development in the area of

structured editing.

Another trigger were probably more mature modergetigpments in the area of the
graphical user interface, which provide visuali@zatand interaction techniques that simply
weren’t available 20 years ago (just think aboutddsoft IntelliSense and the impact it

made! Or compare Eclipse to Notepad!).

2.1.3.Usability problems

Despite of the complexity to create a structureitbedthe first editors were actually built,
and they were working, but the usability wasn’t g@nough to compete with traditional

30

text editors, which allow for a reasonable editsgeed and comfort. Usability is really a
major problem, because of two issues. First, alne&ry editing action requires a
sequence of keyboard/mouse operations, often |athger what it takes to edit plain text.
Second, this new way of editing is totally differeand needs to be adopted by the user

first.

However, the research in structured editors ise&dd A lot of fruitful research is going on
currently and promising technologies are emergwgjch will hopefully tackle the
usability issues. Here we will try to give an ovew of major happenings in the area of

structured editing.

There are existing implementations of structureitibesl We’ll consider the most popular

of them, in random order.

2.2.Intentional programming

Intentional Programming is the brainchild of Char®imonyi. Originally started within
Microsoft Research and enthusiastically led by Siynothe development later branched

off Microsoft and became independent IntentSoftpCar August 2002 [IntentSoft].

Intentional programming is all about capturing theentions of a developer during the
coding process and maintaining the high abstradgeal inside the environment. Thus,
the meaning isn't stripped off the code so the mment literally “knows” about what's
being edited. Custom editing operations can benddfifor the code, which allows the

developer to extend the IDE itself.

A great overview of intentional programming is givean the book “Generative
Programming” ([CzEi], Chapter 11). Other resouritegude an insightful interview with
Simonyi ([Simonyil]), an OOPSLA 2006 presentatigimtentSoft2]) and many others.
Links about intentional programming are being acalated at

http://del.icio.us/KirillOsenkov/IntentionalPrograning.

An implementation of intentional programming imglia structured editor for the source
code. The OOPSLA 2006 paper about intentional arogning shows how the model-
view-controller architecture is used to interadiyvdisplay same code in several views —
plain text, flow diagrams, etc. However, at the neomof this writing, no public preview

of the IP system has been released yet.

31

2.3.JetBrains MPS

In Sergey Dmitriev’s inspirational article [LOP]desire is expressed to allow developers
to extend an IDE and to be able to customize itHerproblem domain. A strong accent is
made on developing DSLs — domain-specific languagespposed to using general tools

and frameworks. This approach is called languagmt@d programming.

The interest of JetBrains in this topic is not oofytheoretical nature. They develop a very
successful and intelligent IDE for Java, Intell3EA ([IntelliJ]). It is distinguished by its
extensive language-awareness and a large numbefulbhutomated refactoring

capabilities. IntelliJ IDEA is also known for itgtensible object-oriented architecture.

It is not surprising that having such a good badstBrains also work on an implementation
of language oriented programming, what they callSmeta programming system). MPS
is an IDE extension which allows the user to defiman domain-specific-languages and to
create documents in these languages using a cuatlomed structured editor. These
documents (called “models”) can be transformedeoegate artifacts such as source code
or XML.

Martin Fowler demonstrates the creation of an Agrest DSL with MPS in [Fowler2].

This is a set of a customized editor, languagend&fh and generation rules to generate
Java code out of models. This language could be tssgenerate Java code out of more
concise descriptions in a specially tailored largguenstead of directly encoding it in Java

manually. Thus the level of expressiveness is tyreaised.

MPS employs the technique of structured editingrtivide an editor for custom languages
and language extensions. The editor is universaarmmg it can be configured by a
specialized grammar — that is, you don’t need to{tade the implementation of an editor
for each language, but simply edit the languagentiein (in a special DSL) and the editor
will automatically learn how to edit programs imatHanguage. Thus, an editor exists to

build editors.

Here we notice how a domain specific language elue describe grammars
for domain specific languages. This idea of a “nmetdel”, a language for
defining languages, comes up fairly often in tle¢dfiof meta-programming and
generative programming. If we talk in terms of defg specialized languages
for everything, why not define a specialized larggidor creating specialized
languages?

32

2.4.The synthesizer generator

Starting in 1978 a syntax-driven editor called @&firiProgram Synthesizer was being
developed at Cornell University. The Synthesizemé&sator [ReTel] is the further
development of it, which is a tool for generatinghtax-driven editors based on the
specification of the language grammar. Apart frostractured editor for the Ada language
(Ada-ASSURED), the development of synthesizer gaoeiseems to be abandoned.

2.5.0ther implementations

2.5.1.ProgramTree

ProgramTree ([ProgrTree]) is a commercial applazatvhich replaces curly braces in C++
and Java sources by a tree-view-like outlining. AMML editor also based on this
approach is being developed as well. However itnsebke ProgramTree isn't truly a
structured editor (is not aware of the semantiog),it simulates structured appearance by
matching braces in realtime. Thus, the user stitsglain text and it has to be parsed first.

2.5.2.Lava and LavaPE

As stated at the [Lava] website:

Lava is an experimental object-oriented rapid apion development (RAD)
language with parameterized ("virtual") types, c&aing, and extensive static
checks. The Lava programming environment LavaPHacep text editors
completely by structure editors.

Lava seems to not only present a new programmingukage and a purely structured
editing environment, but also a new programminga@ggm — the program should be
“‘composed” instead of being “written”. Lava is arpem-source project hosted at

SourceForge and is a playground for some integgdigas and visions of its developers.

2.5.3.BoxView Eclipse plug-in

Eclipse platform has a plug-in developed for itqi®iew]) that displays a hierarchy of
embedded blockisesidetextual code. This is an interesting approachgctvis mostly used

for easy selection of language constructs. Howeveright be difficult for users to switch

33

between two parallel views. BoxView currently doex offer displaying the code the

blocks.

2.5.4.0ther links:

An up-to-date list of web links about structureddeoediting is maintained at
http://del.icio.us/KirillOsenkov/StructuredEditors

2.6. Summary

It is very common for most structured editor imp&artations that the editor is generated
from a grammar using a universal generating to®lpposed to hard-coding the editor
manually. Such systems consist of a universal gemelitor generator, which accepts a

language specification as input and generatesailneas of a structured editor as output.

Instead of writing a structured editor, they write universal factory for
producing structured editors.

Although this approach is one meta-level higherd dhus may occur flexible and
universally applicable, in practice it is probalaydisadvantage because of tremendous

complexity to create such a meta-system.

An intuition based on some experience suggestshidnad-written editors could be better
customized to be more comfortable, because thdorseaan manually adjust it to the
target language. A generator puts tight constrantthe generated editors, unless there is

a powerful extension mechanism which allows for osmextensions.

It also seems more logical to first create an editanually, adapt and optimize it for better
usability, and only after that it makes sense tiddba universal tool to generate editors.
Both JetBrains MPS and the Synthesizer Generatgrauthier or may have suffered from
this additional complexity, whereas developing @ditmanually would probably be a

simpler and more manageable task.

34

3. Functionality of the structured editor

Regardless whether a stand-alone application egiated into an IDE, the main element
of a structured editor is the editor control. Anteddcontrol is a user interface element
which visually displays the edited program on theeen. It is a rectangular area on the

screen where a program or a part of it is displayed

In case of the structured C# editor presentedimthesis, the editor control can display a

single compilation unit at a time.

Theoretically, with a structured editor it is pdsdsito provide different views
on the source code. Examples include showing eofishethods in an editor
control (e.g. a list of all overrides of a givemtual method), or a single class
with no method bodies, or any other arbitrary viewpart of the code, all live
mapped to the AST. However, only a view of a singtenpilation unit is
supported within the scope of this work.

Here is how an editor control looks like (one ogible visualization modes):

35

using System
System.Collections.Generic
System.Text

namespace Guilabs.Editor.Test

H

[

public static class

(8]
(]}
=
w
=1

public static void Main()
Console.WritelLine ("Hello World"ﬂ

Figure 8 - the Hello World program in the structured editor

3.1.Creating a program

3.1.1.Hierarchy of blocks

A program is represented in an editor control dsiemarchy of embedded rectangular
blocks. There are simple blocks (with no embeddedks) and there are container blocks,
which can contain other blocks.

If a container block has a min=sicon next to it, it can be collapsed by clickirngsticon.
To expand it again, click tr+icon. Most containers, if selected, can also b&apsed or

expanded by pressing tf&pace] key.

3.1.2.Insertion point

An insertion point is a special location within teditor control where the user can put the
caret. The caret indicates that it is possiblegeit something at the current caret location.
Moving the caret means jumping to the next or pasiinsertion point. For instance, when
editing text, an insertion point is between eact twighbor characters.

3.1.3.Language constructs

In this section we cover the language construgipatied by the current implementation
of the editor. We divide the language construdts iwo main groups: language constructs
that aré‘outside” a method body (such as namespaces, types ancthgipbers, as well as
methods themselves), and constructs that iasede” a method body (such as statements

or expressions). Formally, if we consider the Ca#hgmar, a construct is “inside” a method

36

if it can be contained withirmnember-body or accessor-body . This separation is
important because it divides the language into approximately equal “levels” — the
upper “level” and the “lower” level. We will work ih language levels throughout this

thesis.

For the language constructs currently supportedhbyimplementation of the editor, we
will provide a grammar definition. It will alwayseba subset of the actual C# 1.0 grammar
given in the ECMA-334 standard ([ECMA]).

Language constructs are visually represented bilteks mentioned above.

3.1.4.Hybrid editor

The structured editor presented in this thesisos purely structured. It is more like a
hybrid between the structured and text editor -héiglevel of the language (types,
members) is implemented in a structural fashionileMower level (statements, method

parameters) is implemented as plain text.

It seemed to lower the usability if all languagenstoucts, including statements, were

implemented differently from text.

3.1.5.Compilation unit

Here is the definition of the compilation unit agpported by the current implementation of

the editor.
compilation-unit:

using-directives opt NAamespace-member-declarations opt
At any given time the editor control can contaisirggle compilation unit. A compilation
unit corresponds to theompilation-unit non-terminal of the C# grammar and is
visually represented by a vertical list of blockbese blocks could be comprised of using

directives and namespace member declarations. Tharbe only one using declaration, at

the top of the compilation unit.

3.1.6.Empty blocks

The elements in this vertical list are blocks. Betw each of these blocks, there is a so-
calledempty block, which separates the language constructs from etmr with some

whitespace and allows to insert new language cactstin place of the empty block. Each

37

empty block is an insertion point. Empty blocks leily model a non-terminal of a
context-free grammar, which allows for insertion lahguage constructs in the correct

order. Let’s illustrate this with a context-freeagrmar with two non-terminals:

A ® dB|AcB
B ® BcB

“A” here is a non-terminal (empty block), from whidttbusing directived” as well as a
namespace member declaratiari ‘tan be produced. We see, that as soon as we have
produced a using blocld”, it appears at the beginning and no further uglogks can be
produced. If we choose to produce a namespace metebkaration out of A", we still

have the ability to insert a using block beforebiit not after. B” represents an empty
block, from which only namespace member declaratioan be produced. One cannot

produce a using block from such an empty block amgm

This mechanism of empty blocks automatically ersubat only grammatically correct
compilation units are allowed. One cannot creatsiag block after a namespace member
declaration, neither can one create a second b$icg after the first one has been created.
Additionally, one cannot create a namespace mexhbaaration before an existing using
block, but can freely create it before or after athyer namespace member declaration.

3.1.7.Inserting new language constructs with empty blocks

The user of the editor can position the caret mdide empty block to insert a new
language construct at this position. After inserti will be automatically surrounded by

appropriate empty blocks.

Each empty block has a list of all language comss$rithat can be inserted at its position.
To show this list, the user can start typing — lieewill popup and highlight the desired

alternative:

1

== abstract

£ class

2] delegate

=] enum

interface

== intemal

B comespoce]
== partial

== public =l

| v

I

Figure 9 - completion list inside an empty block

38

Otherwise, the user can prgsab] , or[ContextMenu] or right-click with the mouse at
the caret location (to the right of the caret).sSkbect an alternative from the list, the user
can pres$Space] , [Enter] ,[Tab] or left-click the desired item with the mouse.tA¢
moment when an alternative is selected, new blacksreated according to the grammar

rules.

Here is an example how a new namespace can be aatiezlempty compilation unit. An
empty compilation unit always contains a single gnghock, which serves as the starting
point for the editing. The caret is positioned histempty block. The user starts typing
“na” and the completion list appears with the wardmespace” highlighted (Figure 9).

The user pressgSpace] to insert a new namespace:

namespace |

The caret jJumps automatically to a place whereusder can input the namespace name.
The user types in a name for the namespace anpresgReturn] or [DownArrow] to
move to the namespace contents. One can alsoteateame at a later stage and navigate
away right after creating the namespace — thilosvad. One can always come back later
and complete the definition by entering the namehange the name at any time.

3.2.Namespace member declarations

A namespace member could be a namespace or adygfagation.

namespace-member-declarations:
namespace-member-declaration
namespace-member-declarations namespace-member- declaration

namespace-member-declaration:
namespace-declaration
type-declaration

type-declaration:
class-declaration
struct-declaration
interface-declaration
enum-declaration
delegate-declaration

39

3.2.1.Namespace

As we have seen above, a namespace is represgnteddntainer with the “namespace”
keyword, a textbox for a namespace name and aaklist of “children”.

3.2.2.Navigating containers with the caret

Navigating the caret around the namespace is tine s& for all other containers. Arrow

keys move the caret or select the entire namedpack.

When the caret is above the container block, pngstie[DownArrow] key first selects
the block itself. When a block is selected, pragsihe[RightArrow] key selects the first
element in the title row of the container (the nankR¥essingDownArrow] key selects
the first child of the container. GenerallyypArrow] and[DownArrow] traverse the

block tree in the depth-first search order. Seeenadout this in section 6.2.

[LeftArrow] key is opposite to th¢RightArrow] key, while [UpArrow] key is
opposite to thgDownArrow] key. In general, navigating the block tree is vangilar to

navigating caret in plain text, with two major egtiens:

1. The caret in a structured editor can only be plaghdre it makes sense (where
there is an insertion point available).

2. An additional stop in the caret movement is madedlect the whole container
when a caret is moving into it. Each container edes all its children in the

traversal order.

3.2.3.Using directives

To add a using declaration, the user positionsctiret to the empty block above the
namespace (by pressing tiupArrow] key) and starts typing “u” — the “using” item is
highlighted in the completion lisfSpace] inserts a new using declaration. The using
declaration consists of a single container per dlatgn unit, with the word “using” on it.

The container contains a vertical list of stringsamespace names, each namespace name
on a separate line. A semicolon at the end ofitteslis not required, because the editor

doesn’t (currently) allow multiple declarations e same line.

40

using

namespace Test

Figure 10 - adding a using declaration

The user can now type in a namespace name to iny&rtg directives are placed inside a
single 'using' container (only one container penpitation unit). When done entering the
namespace name, pressiiggter] moves the caret to the second line inside the same
‘using’ container. When no further using directivaee desired, pressirignter] for the
second time[Backspace] or [Shift+Tab] exits from the using container and moves
the caret to the next empty block:

using System
System.Collections

namespace Test
Figure 11 - exiting from the using declaration

3.3.Type declarations

The user of the editor can add each of the 5 siggadype declarations to the program: a
class, a struct, an interface, an enum or a deledakere are two ways to add a new type
definition. The first is explicitly choosing one &flass”, “struct”, “interface”, “enum” or

“delegate” from the completion list of an empty ¢ko

namespace Test

|
2] interface =]
== internal
=l namespace
== partial
== public
== sealed
= static

- EXCH

Figure 12 - completion list for creating types

41

The second is choosing an access modifier firderAfn access modifier has been entered,
the editor transitions into a temporary state wlattbws entering further access modifiers
or a type declaration. This way, the user can etetdrjust like in traditional text editors:
“pu” ([Space] key completes to “public”) “st”[Epace] key completes to “static”) “c”

([Space] key inserts a new public static class).

Blocks that represent definitions of class, strunterface and enum are all similar
containers, with a horizontal title line and a drebmpartment:

Title line

l
namespace Tesﬂ

public class Foo

Children compariment

Figure 13 - container block sample

Unlike namespace blocks, type definition blocks énawn additional section that allows

editing the access modifiers of the correspondamgliage construct.

3.4. Access modifiers

A special element of the user interface is useahi@del access modifiers. It is a horizontal
list of access modifier keywords and spaces betwlesn:

L L -

public static partial class Forml

e

Although the modifiers may look like plain textethare not. A space between two access

modifiers can be selected and is actually an imsegoint:

pub;i”ustati: partial class F]

e

e

o Ll L

42

The user can right-click the selected insertiomptd popup the completion list or just

start typing in a modifier:

I||
[
|
—
k]
Il.
I||
[
|
—
k]

public id static partial class
abstract

sealed

As we can see, only the modifiers which are vatidd class are being displayed in the
completion list. Once the user commits the compitetlist by pressing[Space] ,
[Enter] , [Tab] or by clicking the desired completion list iterhetaccess modifiers of

the class are changed accordingly:

inte:naletati: partial class Forml : Form

The editor didn’t simply insert the word “internalt actually changed the modifier at the
underlying data structure, and the view was updatedrdingly to reflect the fact that the
class is not public anymore, but internal. It ddesratter, which insertion point we choose
to insert a new modifier — it could be before aernfany existing modifier keyword. If a
modifier already exists, it will not be added a @®t time. If a modifier just entered
overrides some existing modifier (just like intdrimaplies not public), the old conflicting
modifier is deleted automatically. New modifierg automatically inserted at the correct

location, regardless where the caret currently is.

Modifier keywords can only be selected as a whole:

I||
[
|
—
k]

internal |statiq partial class Forml

When a modifier keyword is selected, the user cah $tart typing or pred&nter] to

popup a completion window with a list of possilkd@lacements:

I||
[
|
—
k]

internal |statiq partial class Forml
‘abstract '
sealed

43

To delete a modifier keyword, select it and pi@sdete] . If an insertion point between
two modifiers is selected, pressiriDelete] deletes the next modifier keyword, if

available, and pressifgackSpace] deletes the previous one.

All changes to the modifiers have a transactioadlire and can be undone if necessary.

3.5.Class and struct members

The possible contents for classes and structs sigapby the current implementation are

the following:

class-member-declaration:
field-declaration
method-declaration
property-declaration
constructor-declaration
static-constructor-declaration
type-declaration

struct-member-declaration:
field-declaration
method-declaration
property-declaration
constructor-declaration
static-constructor-declaration
type-declaration

3.5.1.Method

A method is represented by a container with tHe lihe and the children compartment.
The title line is a horizontal list that containgass modifiers, method return type, method
name and parameters. One can create a new methdwbbyging the item “method” from
the completion list of an empty block. One can ariigate methods in empty blocks that

reside within a class or a struct.

Just like with type definitions, the second waycteate a method is just starting to type
access modifiers or the method return type. Aftemecess modifier or a return type has
been entered, the editor is in a special statetwdllows entering the member name. Only
after the user has finished entering a member reamdepresses “(“, the editor can decide

that the user wishes to enter a method. If the peesses “{" instead, a property will be

44

created. Until these two decisions are made, tHmished string is considered a field

declaration (unless the type iofd ”).

The children compartment of a new method initiabntains an empty statement block.
An empty statement block is a textbox where the naa enter new statements. When a
syntactically correct statement is entered intoeampty statement block, it becomes a
statement block itself. As soon as the text oflileek is edited and doesn’t represent a

syntactically correct statement, it is again trdats an empty block.

3.5.2.Property

Properties have always been a very useful and ten oked feature in C#. However the
syntax to enter a property in C# 1.0 is a littlebese: it is necessary to enter 12 lines of

code for the trivial property:

private string mName;
public string Name

{
get
{
return mName;
}
set
{
mName = value;
}
}

Visual C# 2.0 provides aid to simplify entering Bugroperties: there is a “prop” Code
Snippet, which simplifies entering the propertyataninimum effort. However, once the

property has been entered, working with it st¥ldlves a lot of typing.

Finally, in C# 3.0, a new feature appears, whidowad automatic generation of trivial

property implementation by the compiler. Thussisufficient to enter:

public string Name { get; set; }

to achieve the same purpose as the code above.

Working with properties in the editor presentedhis thesis is simplified. While there is a
“prop” item in the completion list, which results an empty property being inserted, a
more flexible way to create a property is to stgping just like if creating a method, and

then pressing the “{" key after the property nam®w the next line:

45

public string Namq
becomes
class Program
public string Name
get
set

where theget andset accessors are inserted automatically. To delejet aor aset
accessor, it is sufficient to select it and préms[Delete] key, just like with any other
block. If bothget andset are deleted, the property becomes a field dedaaratvhen the
user presses “{“ in the next line after a field ldeation, the field becomes a property with
bothget andset accessors. If only one of the accessors is preardtthe user wants to
add the second accessor, it is sufficient to sefleet existing accessor and to press

[Enter] or[Insert]

3.5.3.Field

Another type of a class/struct member is a field.sfated above, creating a field is similar
to creating a method or a property until the usersges “(* or “{* keys to turn the
incomplete declaration into a method or a propedgpectively. Thus, adding a new field
involves typing in the keywords for the access rfiedi, the type of the field and the field
name. One can also enter a field initializer afterssing “=". When a field initializer is

present, one cannot convert the field to a prop@rey method anymore.

Unlike properties or methods, a field block is aotontainer, but a single line of text and
keywords. The field can be selected by prespiiagne] or moving the cursor to the left of
the first element of the field. Alternatively, laflicking with the mouse in a blank area to

the right of the last field element selects thereriteld as well:

public int x = 5

Figure 14 - selecting a field

46

Just as for any other block, selecting the fieldgsful, for example, to delete it with the

[Delete] key.

3.5.4.Constructor

The constructor can be inserted in a class orugtslyy choosing the “ctor” item from the
completion list. A constructor differs from a methan a sense that the name of the
constructor is already predefined by the editor snithe same as the name of the nearest
containing class. Moreover, different constrains specified for the access modifiers (a
constructor cannot be virtual or sealed). Howeseasonstructor still can be static. A static
constructor cannot have any further access moslifi® soon as the constructor with an
access modifier is made static, all other accesdifrars are deleted automatically. The
editor automatically ensures that only availableeas modifiers are shown in the

completion list and can be inserted.

3.6. Statements

The editor differentiates between two types of estaints — those that can contain
embedded block statements (e.g. control structamesYhose that are normally written in a
single line of code in text editors (e.g. assignineariable declaration, return statement,
etc). Assignment, variable declaration and thernetiatement are represented like usual
lines of text. It was not possible to find a reamue non-text representation for such
statements within the scope of this thesis. Besgithestext representation for such items is
good enough and the author didn’t see any pods#silior improvements.

The editor represented in this thesis can thuddssified as a hybrid editor, which models

most language constructs as blocks, but still seTEs certain concepts as plain text.

Here is a code example that demonstrates usingbtsdd statements inside a method
block:

int Question()
int i = &
i=1i%*7
return i

Figure 15 - statements as text

47

Editing such statements is based on the same pliescas editing a plain text program.
Pressing[Enter] at the beginning of such a line inserts a new gnipe before the
current one. Pressingnter] at the end of the line inserts a new empty linerathe

current line.

3.7.Control structures

One can embed control structure blocks, such as-ldp, directly between the statement

lines. Here is an example of a for-loop betweenéiestatement lines:

int Question ()
int i =0, k=20
i=1i=*7

for Jj = 0; J < i; j++
k=1 % 3]
k++

return i

Figure 16 - example of a for loop

At the beginning of each text line within a methmmtly, a completion list item is available
for each control structuréor -loop, foreach -loop, while -loop, as well a§ andelse
statements. Just like namespaces, classes and dsethte control structures are
represented by container blocks with a title limed ahe children compartment. Each
children compartment is initially an empty stateméiock itself. A title line usually
contains the keyword that describes the contralciire as well as additional text

information if necessary (for example, a booleapression for aif -statement).

3.7.1.for statement

The title line of a for block contains three textbe separated by two semicolons:

for ; ;

One can move the cursor between the textboxedikest it was plain text — with the left

and right arrow keys. Pressing ffiab] key moves the cursor to the next textbox.

48

The semicolons are not editable characters — ooeldhreat them as passive separators
that aren’t affected by the editing process. Whendaret is at the end of the first textbox
and the user pressgpace] or[RightArrow] , the caret moves to the beginning of the
second textbox. The same for the end of the setexitbox — it is connected to the

beginning of the third textbox.

3.7.2.foreach statement

Theforeach block is similar in structure to tHer block:

foreach Block child in this.cChildren

Figure 17 - foreach block

The title line of theforeach -container has three textboxes: for the type of the
enumeration variable, for the name of the enunmatiariable and for the object that
implementdEnumerable (typically a collection or a list). When the careiat the end of
the first textbox, pressinggpace] or[Right] moves the caret to the beginning of the
second textbox. When the caret is at the end ofséo®nd textbox, pressirg§pace]
moves the caret to the beginning of the third textbVhen the caret is inside any one of
the textbox, pressing tlj€ab] key moves the caret to the next textbox (cycli, from

the third textbox the caret moves to the first agjaiVhen the caret is in any of the
textboxes, pressingDownArrow] or [Return] moves the caret to the children
compartment. It is impossible to delete tire™keyword, it is hard-coded into the title line

of theforeach block, just like semicolons are built into theetiine of thefor -block.

3.7.3.while, if and else containers

while , if andelse control structures are all implemented very simiia for and
foreach , but their title line is simpler and only contaims single textbox for an

expression.

3.8.Comments

Although there are great opportunities to implen@ntvenient, rich and active comments

in a structured source code editor, the generaptexity of this work as well as time and

49

resource constraints didn’t allow to implement caoanits in the current release. Comments
were prioritized out to allow implementing the méumctionality. For some inspiration on

how comments could be implemented, please sexéongle [LutzR1].

Advanced commenting capabilities could make mangudentation and commenting
methods obsolete, because texts, hyperlinks argtatiies could be inserted directly into

the source code document. XML Comments could Hdbst-the-blanks approach.

3.8.1.Types of comments

Traditional editors use the notion of a commentdifferent purposes:
1. Explaining a line (or lines) of code
2. Temporary disabling (“commenting out”) portionsaoide
3. Documenting classes, methods, etc. with XML commsent

Given a structured editor, it probably makes setwseexplicitly implement different
functionality for each purpose mentioned above. |&xgtory comments could be
implemented as floating or carry-out clouds thatldobe switched on or off. Every

connected code segment could be enabled or disabiled special controls.

XML comments could be embedded into the main docunflew or carried out to a
separate properties window (XML document propestigglow). When a block is selected
in the main editor, its XML comments (and possiblper meta-information) could be

shown in a separate window.

3.9.Code completion

A structured code editor implemented in this wagkactually a component which can be
used both in a stand-alone application or integrateo an existing IDE. In both cases, the
environment into which the editor control is embedidcould provide context-sensitive
information about the program being edited. Micfosalls this technology “IntelliSense”,

and the engine that provides IntelliSense is call8ldnguage service”.

Once a language service is available for the edotrol, it can provide two main code
completion features: showing a list of availablenmbers of a type after the user pressed
the “.” key, or showing the information about paetars of a method after the user presses
the “(* key.

50

4. Architecture

4.1. The Editor Framework

The nature of a structured editor suggests thatusiee interface is composed of different
details — interactive blocks, that together formda@cument. Each block (a control)
represents a language construct and can visuatiaicoother blocks. When implementing
these blocks, it is wise to carry them out intoepasate library, so that the same basic

building blocks can be re-used for different editor

Indeed, such a library of blocks has been creased Bundation for creating structured
editors. From an architectural point of view, this libracan be called a framework,
because it provides APIs and reusable code toyadedine custom blocks. The framework
allows to model syntactic structures and to proadeinteractive visual representation of

such structures.

A structured editor is a .NET component (a usertrobn which depends on this
framework. It could be integrated into an existiBdg or hosted in a stand-alone .exe file.
The framework supports the development of strudtwaitors using the Microsoft .NET

Framework (version 2.0 as of June 2007).

! The editor framework was designed and developedKibf Osenkov, Steffen Biichner, Alexander
Kapitanovskiy and Stefan Adam as part of the re$eaffort at the Chair of Programming Languages and

Compiler Construction supervised by Prof. Dr. ret. habil. Peter Bachmann

51

4.1.1.Graphical Controls Library

An important part of the editor framework is a gengraphical library which provides
capabilities to visualize shapes, embed, layout autd-resize shapes contained in other
shapes, process mouse and keyboard input, etc. &udbrary much satisfy certain
requirements in order to be suitable for creatingtraictured code editor. The most
important requirement is being able to easily managnamic content — automatic
placement and layout of newly created shapes, aittomepositioning of neighbor shapes
during resize, etc. While choosing such a grapHibaéry, a decision was made not to
employ Windows Forms, because Windows Forms prgvit heavy-weight and
resource-intensive (OS native) controls which arewell suited for dynamic positioning
and auto-layout of dynamic documents. While Winddwsms may be good for static
content like dialogs and forms, it would definitgbyove problematic for such highly
dynamic and interactive content as structured socooxe. Moreover, the experience of
extending Windows Forms controls has shown, thealbee they are just wrappers around
native Windows Ul elements, the extensibility aéslk controls is limited.

Just as Microsoft Word doesn’t use Windows contfotsWYSIWYG editing and just as
web-browsers custom-implement the entire rendefurgtionality, all structured code
editors (based on this editor framework) use aotastirawing library provided by the
framework, which was specially designed with dymanantent in mind.

During the planning phase (2004-2005) of the entirgiect a decision was
made to implement a graphical controls library freonatch. If at that time the
release of Windows Presentation Foundation [WPF} we&ailable, most
probably it would have been chosen instead, beciays®vides an excellent
object-oriented library of visual controls well ®d for dynamic content.
Unfortunately, WPF wasn'’t available at that time.

4.1.2.Summary of users and roles

We distinguish three major roles:

1. Developers of the editor frameworkprovide several .dll files (NET assemblies),
where all the core functionality and base blocks @efined. The author of this
thesis belongs to the group of the framework dgeie

2. Users of the framework develop a structured editotafget editoj for some

programming or markup languagarget language The framework .dlls are used

52

as a reference. Hence, the users of the framewerknast oftenauthors of an

editor.

3. Users of the target editorwork with the editor to create and edit programs o
documents in the target language. They don’'t nacissequire any .NET IDE or
.NET knowledge for this purpose (unless the taggbtor is for one of the .NET

languages).

Source code of the framework

J

=

Framework binaries (.dll) + Source code of the target editg

N—

Binaries of the target editor (.dll or .exe

Figure 18 — Dependencies of an editor from the fragwork

When we speak of the structured editor framewor&, can mean both the
framework sources as well as the compiled binadepending on the context.

The framework design is based on a layered ar¢hiee@and consists of four layers. Each
higher layer depends on all the layers below itchERyer is represented by a C# 2.0

Project:

4.2.Utils

The Utils project has no dependencies on other layers.fihededifferent helpers and
auxiliary code used throughout the framework amdetaeditorsUtils provides classes
to simplify work with the file system, calling Wi@3API, colors, strings, lists and
collections, timers, common delegates. It also iiew base classes and interfaces to

model actions and user interface commands.

53

4.3.Canvas

Canvas is a low-level presentation layer (graphical Ity)a which provides drawing

capabilities. It only depends on tbels layer.

An important design decision was not to explicitse GDI+ or any other graphical library
for drawing purposes directly, but instead to aeah intermediate abstraction layer
between the framework and different graphical badke Canvas currently provides
rendering options using GDI and GDI+. DirectX angpe@GL renderers could be
implemented using the same principles.

As measurements have shown, GDI renderer provieltsriperformance while
rendering simple geometric 2D content. That is wmy GDI renderer is the
default renderer of th€anvas library.

An important class in théanvas library is theDrawWindow class.DrawWindow is a user
control that provides thRepaint event. When the users want to draw something en th
surface of theDrawWindow, they subscribe to thRepaint event and draw everything
there. TheRepaint event has one parameter of tyl®enderer — subscribers of the

event use this parameter to access drawing furadtipn

DrawWindow is theFacade class to th&€anvas library.

4.4.Controls

As stated above, another design decision was naséd/Nindows Forms to model blocks
visually. TheControls library defines custom classes that model vishapss on the
screen (these shapes are also catiedtroly. These controls have no dependence on
System.Windows.Forms and are rendered using tBanvas library of the framework.
They are specifically suited for displaying interae hierarchical data structures on the

screen and allowing the manipulation of the datassr (using mouse and keyboard).

In this thesis, controls mean the objects from @untrol library of the
framework, and not the Windows Forms controls.

54

The root class of the controls hierarchy is thesstzontrol . Commonly used controls

like TextBox , Label , Button undContainerControl inherit from the clas€ontrol

4.5.Core

Core is the main library of the editor framework. Itfiles the data structurBlock |,
which is used to model an arbitrary language caostrOne can implement custom
language constructs by inheriting from the bases@ck or some other base class and

adding required functionality.

The advantage of the structured editor frameworksgmted in this thesis is that all
language constructs can be treated uniformly. Thegramework can provide services for

all (even future) language constructs:
Hierarchical data structure (Previous, Next, Par€htldren)
Atomic operations on the data structure (Add, Mdrsert, Replace, Delete)
Virtually unlimited Undo/Redo steps and a transatB8ystem
Rendering and scrolling
Focus and navigation
Hosting (displaying) the data structure in a Winddvorms Control

Popup menus and drop-down selection (completion)

4.5.1.Blocks and controls

Each block is represented on the screen using taotdrom theControls library. Each

object of typeBlock has a run-time reference to a corresponding objfegipe Control
Note about the OO design of blocks and controls

It is important to understand that “a block HASaoatzol”, and not “a block IS a
control”. Controls have no idea of blocks and hagedependency on ti@ore
library. This gives us the flexibility and freedota reuse controls in other
graphical projects.

The design decision to implement controls outsidia® blocks hierarchy was a
difficult one. In early implementations, the claBkck inherited from the

55

classControl . This turned out to cause problems w@bntainerBlock
which (conceptually) should be inherited both froBlock and from
ContainerControl . Since .NET doesn’t have multiple inheritance (&4
has no mix-ins), one has to choose, whetBentainerBlock should be
inherited fromBlock or from ContainerControl . If ContainerBlock

is inherited fromBlock , the functionality ofContainerControl has to be
doubled in ContainerBlock . If ContainerBlock is inherited from
ContainerControl , the entire code fromlock must be duplicated.

This problem is known as ,burning the base cla8sjood example of burning
the base class is theystem.MarshalByRefObject class in the .NET

framework. It clearly should have been an attribostead. Brad Abrams and
Krzysztof Cwalina talk about this design problenjfDG].

The Bridge design pattern helped to resolve the problem kplacing
inheritance with aggregation. This decision alsovigles more flexibility and
allows automatic data-binding of a container cdrtvaccustom lists (see [WPF]
for the explanation of data-binding).

4.5.2.Actions
Any change to the block data structure at runtisngeparated into two steps:
1. prepare the change (record it into a step desoripé so calledction) and

2. actually apply the change using this description.

Thus, changes are not carried out directly, butfiesse encapsulated in Actions (delayed,
Jazy* execution). This architecture allows to saations in an Undo/Redo buffer (design
patte